AVALIAÇÃO DO POTENCIAL DO RESÍDUO OLEOSO DE PESCADO PARA A PRODUÇÃO DE POLIHIDROXIALCANOATOS POR

Cupriavidus necator

Matta Filho, M. P.; Silva Anias, F.; Assis, D. J.(Dr.)

UNIVERSIDADE SALVADOR - UNIFACS

Engenharia Química – Campus Tancredo Neves, denilson.assis@unifacs.com.br

Introdução

A crescente preocupação ambiental tem intensificado a busca por alternativas aos polímeros derivados de petróleo, levando à adoção de biopolímeros como os polihidroxialcanoatos (PHAs), que combinam propriedades similares às dos plásticos convencionais com menor impacto ambiental (GARCIA-CRUZ & SILVA, 2010; MAYA-VETENCOURT et al., 2017; GRIGORE et al., 2019). Este estudo investiga o uso do óleo residual da indústria pesqueira como fonte de carbono para a produção de PHAs pelo microorganismo Cupriavidus necator, contribuindo para o aproveitamento de subprodutos industriais e promovendo práticas alinhadas às demandas por sustentabilidade (BLUNT, LEVIN & CICEK, 2018; PALANIKUMAR et al., 2022).

A composição rica em ácidos graxos dos óleos residuais, associada à capacidade do C. necator de sintetizar PHAs sob condições específicas de cultivo, posiciona esses resíduos como uma alternativa viável e econômica para a bioprodução de polímeros (CRUTCHIK et al., 2020; BELLINI, TOMMASI & FINO, 2022). Assim, este trabalho busca avaliar o potencial desses óleos, reduzir os custos de produção, valorizar resíduos da indústria pesqueira e contribuir para soluções ambientalmente responsáveis.

Objetivo

Avaliar o potencial do resíduo oleoso de pescado como fonte de carbono para a produção de polihidroxialcanoatos (PHAs) por *Cupriavidus necator*.

Metodologia

A metodologia adotada para a produção de PHA utilizando a bactéria Cupriavidus necator é ilustrada no fluxograma apresentado na Figura 1.

Figura 1 - Etapas do processo produtivo de PHA.

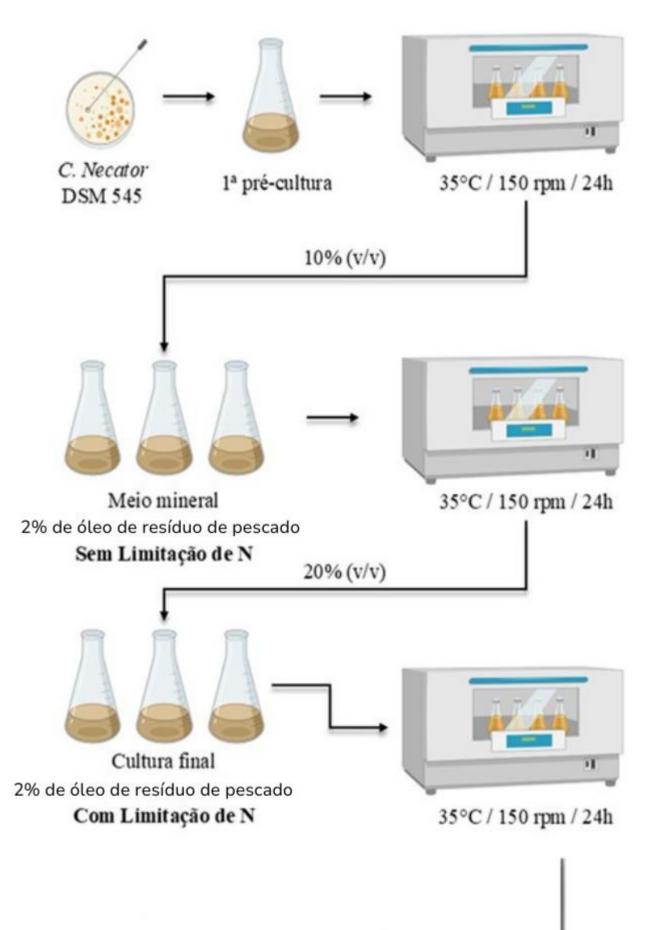
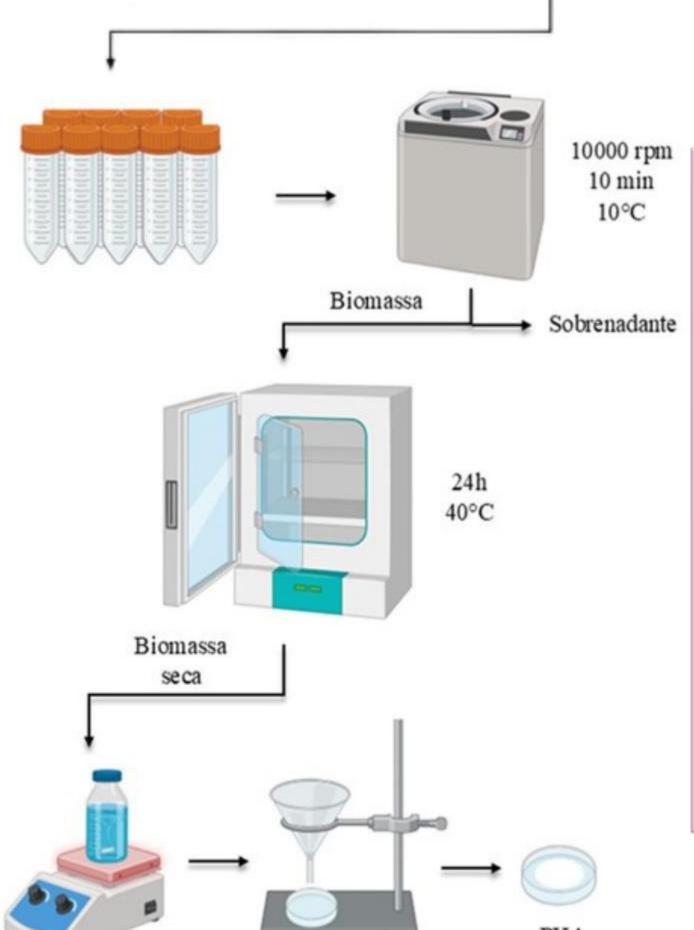



Figura 2 – Resíduo oleoso de peixe e suas frações.

Filtração

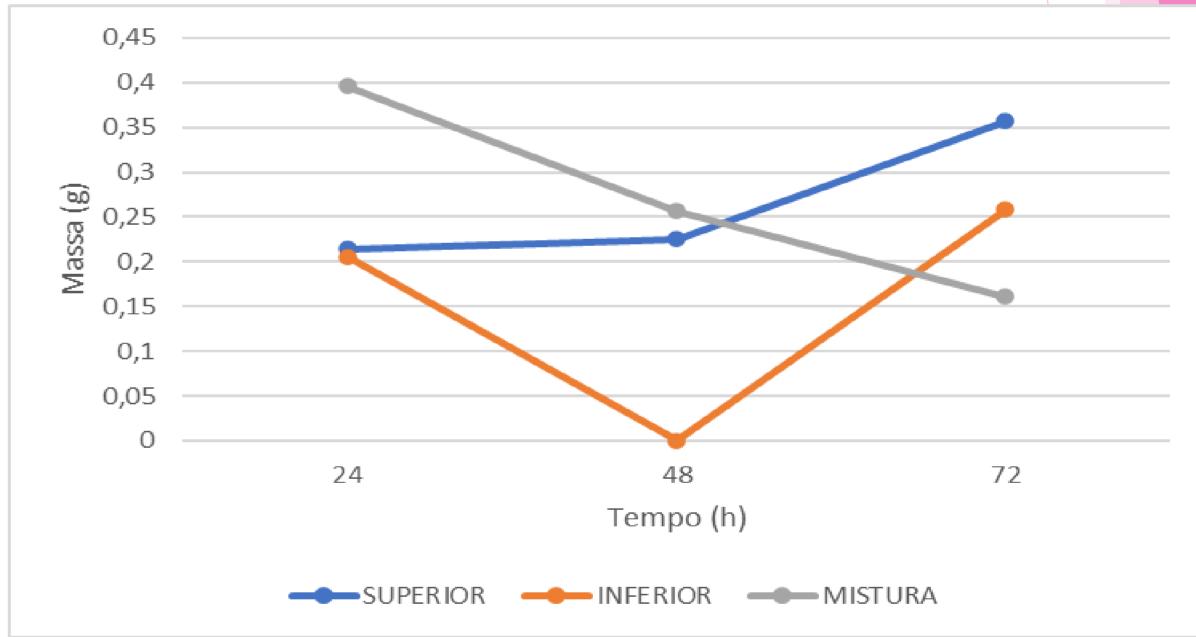
Clorofórmio a 85°C / 2h

Figura 3 – PHA extraído.

III SIMPÓSIO DE PESQUISA

DO ECOSSISTEMA ÂNIMA

Os resultados mostram o uso do resíduo oleoso de pescado como fonte de carbono para a produção de PHAs por Cupriavidus necator. A Tabela 1 apresenta as quantidades de biomassa celular e PHA produzidas ao longo do cultivo em diferentes frações do resíduo e na mistura das frações.


Tabela 1: Quantidade de biomassa celular e percentual de acúmulo de PHA ao longo de diferentes cultiv<mark>os.</mark>

Parâmetros	Tempo de cultivo		
	24h	48h	7 2h
Mistura das frações oleosas			
Biomassa celular (g)	1,0456	1,2953	0,8976
PHA (g)	0,828	0,665	0,289
Acúmulo de PHA (%)	79,18	51,32	32,22
Fração oleosa inferior			
Biomassa celular (g)	1,1765	0,6869	1,661
PHA (g)	0,484	-	0,608
Acúmulo de PHA (%)	41,14	-	36,60
Fração oleosa superior			
Biomassa celular (g)	1,5041	1,8102	1,1979
PHA (g)	0,646	0,816	0,855
Acúmulo de PHA (%)	42,92	45,06	71,40

A análise dos dados mostrou que o acúmulo de PHA foi mais alto na mistura das frações, com 79,18% em 24 horas. A produção de PHA similar foi obtida na fração menos oleosa, mas após 72 horas, com 71,4%. A mistura das frações proporcionou uma utilização mais eficiente do resíduo e menor tempo de cultivo.

A Figura 2 representa a produção de PHA ao longo do cultivo.

Figura 4: Produção de PHA em função do tempo de cultivo.

A produção de PHA na mistura das frações do óleo diminui após 24 horas, enquanto no óleo fracionado aumenta gradualmente, atingindo o pico em 72 horas. Essa diferença pode ser atribuída à composição química dos substratos, com a mistura possivelmente contendo compostos inibidores, enquanto o óleo fracionado oferece uma fonte de nutrientes mais estável, favorecendo um aumento consistente na produção de PHA.

Conclusões

O resíduo oleoso de pescado demonstrou ser uma fonte sustentável e eficiente para a produção de PHAs, com destaque para o óleo das vísceras e a fração superior pelos melhores resultados em produtividade e qualidade. A valorização de subprodutos industriais oferece soluções econômicas e ambientalmente responsáveis. Contudo, a otimização das frações e das condições de cultivo bacteriano é essencial para viabilizar a produção em escala industrial, demandando mais estudos futuros.

Bibliografia

ASSIS, D. J. et al. Simultaneous biosynthesis of polyhydroxyalkanoates and extracellular polymeric substances (EPS) from crude glycerol by different bacterial strains. Applied Biochemistry and Biotechnology, v. 180, p. 1110-1127, 2016.BELLINI, S.; TOMMASI, T.; FINO, D. Poly (3-hydroxybutyrate) biosynthesis by Cupriavidus necator: A review on waste substrates utilization for a circular economy approach. Bioresource Technology Reports, v. 17, p. 100985, 2022.BLUNT, W.; LEVIN, D. B.; CICEK, N. Bioreactor operating strategies for improved polyhydroxyalkanoate (PHA) productivity. Polymers, v. 10, p. 1197, 2018.CRUTCHIK, D. et al. Polyhydroxyalkanoates (PHAs) Production: A feasible economic option for the treatment of sewage sludge in municipal wastewater treatment plants? Water, v. 12, p. 1118, 2020.GARCIA-CRUZ, C. H.; SILVA, A. N. A. A metodologia da superfície de resposta como ferramenta para a avaliação da produção de alginato e poli-hidroxibutirato pela Azotobacter vinelandii. Acta Scientiarum Technology, Maringá, v. 32, p. 105-112, 2010.MAYA-VETENCOURT, J. F. et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nature Materials, v. 16, p. 681–689, 2017.PALANIKUMAR, L.; AL-HOSANI, S.; KALMOUNI, M.; NGUYEN, V. P.; ALI, L.; PASRICHA, R.; BARRERA, F. N.; MAGZOUB, M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Communications Biology, v. 3, p. 95, 2020.

Agradecimentos

Este trabalho foi realizado com o apoio do Programa Institucional de Bolsas de Iniciação Científica (PIBIC), financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

