EXPERIMENTAÇÃO NUMÉRICA DO ESCOAMENTO DE FLUIDOS EM ESTRUTURAS BIFURCADAS APLICANDO O MÉTODO DO DESIGN CONSTRUTAL

Engenharias – Fenômenos de Transporte

Natã Douglas Couto Perfeito Dr. Vinicius da Rosa Pepe (orientador)

UNIRITTER

Engenharia Química, Zona Sul

ncperfeito@outlook.com, vinicius.pepe@ulife.com.br

Introdução

Estruturas de escoamento em forma de árvore são objeto de estudo de diversas investigações, seja por uma aplicação na área de engenharia, medicina ou biologia (BEJAN, 2000). Visto a importância da compreensão dos efeitos e comportamentos que ocorrem nos

Entretanto no modelo numérico a queda de pressão é calculada através da coleta das pressões nas superfícies de entrada e saída de fluido do modelo, ou seja $\Delta P = P_{0.0} - [(P_{1.1} + P_{1.2}) / 2]$ (7)

sistemas naturais, estes muitas vezes são as fontes de inspiração para a predição das características dos sistemas artificiais (MIGUEL; ROCHA, 2018). Para um sistema de transporte de fluidos, a melhor configuração, que conecta um ponto-a-volume ou vice-versa, é a que possui a forma de árvore, usualmente a razão ótima entre as dimensões dos tubos, grande (pai) e pequeno (filho), é a incógnita a ser determinada (BEJAN, 2000; MIGUEL; ROCHA, 2018). Para uma estrutura bifurcada, onde ocorre um escoamento de Hagen-Poiseuille através dos tubos, Hess (1917) e Murray (1926) afirmaram que a vazão volumétrica deve ser proporcional ao cubo do diâmetro para os dutos otimizados atingirem o trabalho mínimo para conduzir e manter o escoamento de fluido. Através do princípio do trabalho mínimo deriva-se a lei de Hess-Murray, por outro lado, está também pode ser obtida a à luz da lei Construtal (BEJAN 2000; PEPE, ROCHA, MIGUEL, 2017; MIGUEL; ROCHA, 2018; PEPE et al., 2022). A lei Construtal fundamenta-se no pensamento que os sistemas onde ocorre escoamento têm um propósito (o objetivo final é persistir) e são livres para se transformar ao longo do tempo (evoluir) sob restrições globais (BEJAN, 2000; MIGUEL; ROCHA, 2018). Normalmente as relações de projeto obtidas são baseadas tanto no princípio do trabalho mínimo como na lei Construtal (BEJAN, ROCHA, LORENTE, 2000; PEPE, ROCHA, MIGUEL, 2017; MIGUEL; ROCHA, 2018; PEPE et al., 2022). Estudos com abordagens analíticas, numéricas unidimensional ou bidimensional, são as mais simples a serem desenvolvidas, porém esses estudos envolvem consideráveis suposições e simplificações para a obtenção de uma solução conforme o que é exposto por Pepe, Rocha, Miguel (2017). Desta forma, o atual trabalho tem como propósito investigar as diferenças entre o modelo analítico e o modelo computacional, para um sistema onde ocorre o escoamento interno em uma estrutura bifurcada com paredes impermeáveis e utilizando fluidos newtonianos. Também se objetiva a identificação dos efeitos dos parâmetros geométricos para a minimização da queda de pressão do escoamento. O desenvolvimento de um modelo CFD (*Computational Fluid Dynamic*), para a solução das equações que governam o problema físico é utilizado para a obtenção resultados que confrontem os modelos mais simplistas, para isto adotou-se uma abordagem numérico computacional em três dimensões

Resultados

Os efeitos dos parâmetros geométricos sobre os resultados da queda de pressão, calculados através do modelo analítico, podem ser observados nas curvas da figura 2. Identifica-se de forma global que a queda de pressão mínima se encontra no intervalo $0,7 \le a_D \le 0.8$, ou seja, tende a concordar com a lei de Hess-Murray onde $a_D = 2^{-1/3}$. Quanto ao ângulo de bifurcação, $\beta = 125^{\circ}$ apresentou a menor queda de pressão, este resultado diverge da lei de Hess-Murray onde $\beta = 75^{\circ}$. Pode-se atribuir esta divergência as simplificações do modelo analíticos sobre os modelos numéricos complexos ou sobre os sistemas reais, sendo assim, destaca-se que as perdas localizadas não estão comtempladas no modelo analítico.

Em média o erro relativo entre modelo analítico e o modelo numérico é de 25,52% para $\phi = 0,5$ e 3,17% para $\phi = 0,05$, assim pode-se presumir que as perdas localizadas nas estruturas mais esbeltas são menos significativas que nas estruturas menos esbeltas. Corroborando com este pensamento os campos de velocidade e pressão estática foram obtidos através da solução numérica utilizando técnicas de dinâmica dos fluidos computacional (CFD), destaca-se que nestes resultados as perdas localizadas estão comtempladas.

Objetivos

O objetivo deste trabalho é comparar estruturas de tubos bifurcados, obtidos pelo método Design Construtal, com estruturas obtidas pela lei de Hess-Murray, visando responder se é possível predizer desvios na lei de Hess-Murray.

Metodologia

Na aplicação do método do Design Construtal se faz necessário a definição das restrições e graus de liberdade que permitem a evolução do sistema, para o presente estudo o sistema genérico é representado através da figura 1. Define-se a constante geométrica global como sendo a área plana ocupada pelos tubos, igual a 0,009143 m², que é fixa para todos os casos estudados. Os graus de liberdade do sistema são definidos pela razão entre os diâmetros (a_D) e pela razão de comprimentos (a_L) , ângulo de bifurcação (β) e razão de volumes (ϕ) .

$A_{planar} = 2 L_0 L_1 \operatorname{sen}\beta + 2 L_1 2 \cos\beta \operatorname{sen}\beta$	(1)
$a_D = D_1 / D_0$	(2)
$a_L = L_1 / L_0$	(3)
$\phi = V_{tubos} / V_{ocupado}$	(4)

As dimensões do tubo de entrada foram associadas ao modelo da árvore respiratória onde $D_0 = 0,018$ m e $L_0 = 0,120$ m. O ângulo $\beta = 75^\circ$ está associado ao princípio do trabalho mínimo conforme Murray (1926a). No modelo analítico ideal, é realizado um estudo paramétrico para determinar a queda de pressão, dotando o escoamento de Hagen-Poiseuille, com $\rho = 1,225$ kg/m³ e $\mu = 0.0000179$ Pa.s e fator de atrito para o regime laminar conforme o modelo de Darcy Weisbach, f = 64/ *ReD*.

$\Delta P = f (L_i / D_i) (\rho u^2 / 2)$

(5)

Conclusões

A Lei de Hess-Murray é uma proposta para explicar a melhor maneira de conectar tubos bifurcados. Ele determina a proporção ideal entre os diâmetros dos tubos bifurcados. Quando se segue as premissas do mínimo trabalho a estrutura ótima obedecerá a lei da raiz cúbica de 2. Diante os resultados destacam-se que, dada a liberdade de transformação do sistema de escoamento, ou seja, permitindo mudanças em seus graus de liberdade; melhorará o desempenho geral do sistema de transporte de fluidos. Isso corrobora o pensamento construtal, "a liberdade é boa para o *design*". Consequentemente, todas as melhores configurações provaram ser aquelas que melhor transportam o fluido entre um ponto-a-volume ou vice-versa. Ambas as observações estão de acordo com a Teoria Construtal.

Bibliografia

BEJAN, A. Shape and Structure, From Engineering to Nature. Cambridge University Press. (2000).
BEJAN, A., LORENTE, S. Design with Constructal Theory. New Jersey, NJ: Wiley. (2008).
BEJAN, A., ROCHA, L. A. O., LORENTE, S. Thermodynamic optimization of geometry: T and Y-shaped constructs of fluid streams. Int. J. Therm. Sci, v. 39, 949-960 (2000).
HESS, W. R. Über die periphere Regulierung der Blutzirkulation. Pflger's Archiv fr die gesamte Physiologie des Menschen und der Tiere, v. 168, 439-490. (1917).
MIGUEL, A. F., ROCHA, L.A.O. Tree-shaped flow networks fundamentals, in TreeShaped Fluid Flow and Heat Transfer. New York, NY: Springer. (2018).
MURRAY, C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U. S. A., 12, 207-214 (1926).
MURRAY, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. v. 9, 835-841, (1926)
PEPE, V. R., ROCHA, L. A. O., MIGUEL, A. F. Optimal branching structure of fluidic networks with

Fig.1 – Esquema da estrutura bifurcada

permeable walls, BioMed Research International, v. 2017, 1-12, (2017). PEPE, V. R., MIGUEL, A. F., ZINANI, F. S. F., ROCHA, L. A. O. New insights into creeping fluid flow through dendritic networks: A constructal view. International Communications in Heat and Mass Transfer. v. 139, 1-12, (2022).

Apoio Financeiro: Programa Ânima de Iniciação Científica – PROCIÊNCIA, 2022/2